
 

International Journal of Engineering and Applied Sciences (IJEAS) 

 ISSN: 2394-3661, Volume-3, Issue-2, February 2016   

                                                                                              62                                                                           www.ijeas.org 

 

Abstract— Wireless sensor networks will be widely deployed 

in the near future. While much research has focused on making 

these networks feasible and useful, security has received little 

attention. We present a suite of security protocols optimized for 

sensor networks: SPINS. SPINS has two secure building blocks: 

SNEP and TESLA. SNEP includes: data con dentiality, two 

party data authentication, and evidence of data freshness.. We 

implemented the above protocols, and show that they are 

practical even on minimal hardware .the performance of the 

protocol suite easily matches the data rate of our network. 

Additionally, we demonstrate that the suite can be used for 

building higher level protocols. 

 

 

Index Terms— secure communication protocols, sensor 

networks, mobile ad hoc networks, MANET, authentication of 

wireless communication, secrecy and con dentiality, 

cryptography 

I. INTRODUCTION 

  We envision a future where thousands to millions of small 

sensors form self organizing wireless networks. How can we 

provide security for these sensor networks? Security is not 

easy; compared with conventional desktop computers, severe 

challenges exist – these sensors will have limited processing 

power, storage, bandwidth, and energy. 

We need to surmount these challenges, because security is so 

important. Sensor networks will expand to all aspects of our 

lives. Here are some typical applications: 

Emergency response information: sensor networks will 

collect information about the status of buildings, people, and 

transportation pathways. Sensor information must be 

collected and passed on in meaningful, secure ways to 

emergency response personnel.  

Energy management: in 2001 power blackouts plagued 

California. Energy distribution will be better managed when 

we begin to use remote sensors. For example, the power load 

that can be carried on an electrical line depends on ambient 

temperature and the immediate temperature on the wire. If 

these were monitored by remote sensors and the remote 

sensors received information about desired load and current 

load, it would be possible to distribute load better. This would 

avoid circumstances where Californians cannot receive 

electricity while surplus electricity exists in other parts of the 

country.  

Medical monitoring: we envision a future where individuals 

with some types of medical conditions receive constant 

monitoring through sensors that monitor health conditions. 

For some types of medical conditions, remote sensors may 

apply remedies (such as instant release of emergency 

medication to the bloodstream). Logistics and inventory 

management: commerce in America is based on moving 
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goods, including commodities from locations where surpluses 

exist to locations where  

needs exist. Using remote sensors can substantially improve 

these mechanisms. These mechanisms will vary in scale – 

ranging from worldwide distribution of goods through 

transportation and pipeline networks to inventory 

management within a single retail store. 

Battlefield management: remote sensors can help eliminate 

some of the confusion associated with combat. They can 

allow accurate collection of information about current battle 

eld conditions as well as giving appropriate information to 

soldiers, weapons, and vehicles in the battled.  

This article presents a set of Security Protocols for Sensor 

Networks, SPINS. The chief contributions of this article are: 

Exploring the challenges for security in sensor networks.  

Designing and developing TESLA (the “micro” version of 

TESLA), providing authenticated streaming broadcast.  

Designing and developing SNEP (Secure Network 

Encryption Protocol) providing data con dentiality, two party 

data authentication, and data freshness, with low overhead.  

Designing and developing an authenticated routing protocol 

using our building blocks.  

 

1.1. Sensor hardware 

At UC Berkeley, we are building prototype networks of small 

sensor devices under the Smart Dust program [45], one of the 

components of CITRIS. We have deployed these in one of 

522 

Table 1 Characteristics of prototype SmartDust nodes. 

CPU 8bit, 4 MHz 

Storage 8 Kbytes instruction   ash 

512 bytes RAM 

512 bytes EEPROM 

Communication 916 MHz radio 

Bandwidth 10 Kbps 

Operating system Tiny OS 

OS code space 3500 bytes 

Available code space 4500 bytes 

 

our EECS buildings, Cory Hall. We are currently using these 

for a very simple application – heating and air conditioning 

control in the building. However, the same mechanisms that 

we describe in this paper can be modified to support sensor 

that handle emergency system such as re, earthquake, and 

hazardous material response. 

By design, these sensors are inexpensive, low power 

devices. As a result, they have limited computational and 

communication resources. The sensors form a self organizing 

wireless network and form a multi hop routing topology. 

Typical applications may periodically transmit sensor 

readings for processing. 

Our current prototype consists of nodes, small battery 

powered devices, that communicate with a more powerful 

base station, which in turn is connected to an outside network. 

Table 1 summarizes the performance characteristics of these 
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devices. At 4 MHz, they are slow and underpowered (the CPU 

has good support for bit and byte level I/O operations, but 

lacks support for many arithmetic and some logic operations). 

They are only 8bit processors (note that according to [53], 

80% of all microprocessors shipped in 2000 were 4 bit or 8 bit 

devices). Communication is slow at 10 Kbps. 

The operating system is particularly interesting for these 

devices. We use TinyOS [23]. This small, event driven 

operating system consumes almost half of 8 Kbytes of 

instruction ash memory, leaving just 4500 bytes for security 

and the application. 

It is hard to imagine how significantly more powerful 

devices could be used without consuming large amounts of 

power. The energy source on our devices is a small battery, so 

we are stuck with relatively limited computational devices. 

Wireless communication is the most energy consuming 

function performed by these devices, so we need to minimize 

communications overhead. The limited energy supplies create 

tensions for security: on the one hand, security needs to limit 

its consumption of processor power; on the other hand, 

limited power supply limits the lifetime of keys (battery 

replacement is designed to reinitialize devices and zero out 

keys).
1
 

 

1.2. Is security on sensors possible? 

These constraints make it impractical to use most current 

secure algorithms, since they were designed for powerful 

processors. For example, the working memory of a sensor 

Base stations differ from nodes in having longer lived energy 

supplies and additional communications connections to 

outside networks. PERRIG ET AL. 

node is not sufficient to even hold the variables for 

asymmetric cryptographic algorithms (e.g., RSA [14] with 

1024 bits), let alone perform operations with them. 

A particular challenge is broadcasting authenticated data to 

the entire sensor network. Current proposals for authenticated 

broadcast are impractical for sensor networks. Most proposals 

rely on asymmetric digital signatures for the authentication, 

which are impractical for multiple reasons (e.g., long 

signatures with high communication overhead of 50–1000 

bytes per packet, very high overhead to create and verify the 

signature). Furthermore, previously proposed purely 

symmetric solutions for broadcast authentication are 

impractical: Gennaro and Rohatgi’s initial work required over 

1 Kbyte of authentication information per packet [15], and 

Rohatgi’s improved time signature scheme requires over 300 

bytes per packet [14]. Some of the authors of this article have 

also proposed the authenticated streaming broadcast TESLA 

protocol [13]. TESLA works well on regular desktop 

workstations, but uses too much communication and memory 

on our resource starved sensor nodes. This article extends and 

adapts TESLA to make it practical for broadcast 

authentication for sensor networks. We call our new protocol 

TESLA. 

We have implemented all of these primitives. Our 

measurements show that adding security to a highly resource 

constrained sensor network is feasible. 

Given the severe hardware and energy constraints, we must 

be careful in the choice of cryptographic primitives and the 

security protocols in the sensor networks. 

II. SYSTEM ASSUMPTIONS 

Before we outline the security requirements and present our 

security infrastructure, we need to de ne the system 

architecture and the trust requirements. The goal of this work 

is to propose a general security infrastructure that is 

applicable to a variety of sensor networks. 

 

2.1. Communication architecture 

Generally, the sensor nodes communicate over a wireless 

network, so broadcast is the fundamental communication 

primitive. The baseline protocols account for this property: on 

one hand they affect the trust assumptions, and on the other 

they minimize energy usage. 

A typical Smart Dust sensor network forms around one or 

more base stations, which interface the sensor network to the 

outside network. The sensor nodes establish a routing forest, 

with a base station at the root of every tree. Periodic 

transmission of beacons allows nodes to create a routing 

topology. Each node can forward a message towards a base 

station, recognize packets addressed to it, and handle message 

broadcasts. The base station accesses individual nodes using 

source routing. We assume that the base station has 

capabilities similar to the network nodes, except that it has 

sufficient battery power to surpass the lifetime of all sensor 

nodes, sufficient memory to store cryptographic keys, and 

means for communicating with outside networks 

We do have an advantage with sensor networks, because 

most communication involves the base station and is not 

between two local nodes. The communication patterns within 

our network fall into three categories: 

Node to base station communication, e.g., sensor readings.  

 

Base station to node communication, e.g., speci c requests.  

 

Base station to all nodes, e.g., routing beacons, queries or 

reprogramming of the entire network.  

 

Our security goal is to address these communication 

patterns, though we also show how to adapt our baseline 

protocols to other communication patterns, i.e. node to node 

or node broadcast. 

 

2.2. Trust requirements 

Generally, the sensor networks may be deployed in untrusted 

locations. While it may be possible to guarantee the integrity 

of the each node through dedicated secure microcontrollers 

(e.g., [1] or [13]), we feel that such an architecture is too 

restrictive and does not generalize to the majority of sensor 

networks. Instead, we assume that individual sensors are 

untrusted. Our goal is to design the SPINS key setup so a 

compromise of a node does not spread to other nodes. 

Basic wireless communication is not secure. Because it is 

broadcast, any adversary can eavesdrop on traffic, inject new 

messages, and replay old messages. Hence, our protocols do 

not place any trust assumptions on the communication 

infrastructure, except that messages are delivered to the 

destination with nonzero probability. 

Since the base station is the gateway for the nodes to 

communicate with the outside world, compromising the base 

station can render the entire sensor network useless. Thus the 

base stations are a necessary part of our trusted computing 

base. Our trust setup reacts this and so all sensor nodes 
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intimately trust the base station: at creation time, each node 

gets a master secret key which it shares with the base station. . 

Finally, each node trusts itself. This assumption seems 

necessary to make any forward progress. In particular, we 

trust the local clock to be accurate, i.e. to have small drift. 

 

2.3. Design guidelines 

With the limited computation resources available on our 

platform, we cannot afford to use asymmetric cryptography 

and so we use symmetric cryptographic primitives to 

construct the SPINS protocols. Due to the limited program 

store, we construct all cryptographic primitives (i.e. 

encryption, message authentication code (MAC), hash, 

random number generator) out of a single block cipher for 

code reuse. To reduce communication overhead we exploit 

common state between the communicating parties 

III. REQUIREMENTS FOR SENSOR NETWORK SECURITY 

This section formalizes the security properties required by 

sensor networks, and shows how they are directly applicable 

in a typical sensor network. 

 

3.1. Data confidentiality 

A sensor network should not leak sensor readings to 

neighbouring networks. In many applications (e.g., key 

distribution) nodes communicate highly sensitive data. The 

standard approach for keeping sensitive data secret is to 

encrypt the data with a secret key that only intended receivers 

possess, hence achieving con denasality. Given the observed 

communication patterns, we set up secure channels between 

nodes and base stations and later bootstrap other secure 

channels as necessary. 

 

3.2. Data authentication 

Message authentication is important for many applications in 

sensor networks (including administrative tasks such as 

network reprogramming or controlling sensor node duty 

cycle). Since an adversary can easily inject messages, the 

receiver needs to ensure that data used in any decision making 

process originates from a trusted source. Informally, data 

authentication allows a receiver to verify that the data really 

was sent by the claimed sender. Informally, data 

authentication allows a receiver to verify that the data really 

was sent by the claimed sender. 

In the two party communication case, data authentication 

can be achieved through a purely symmetric mechanism: The 

sender and the receiver share a secret key to compute a 

message authentication code (MAC) of all communicated 

data. When a message with a correct MAC arrives, the 

receiver knows that it must have been sent by the sender. 

This style of authentication cannot be applied to a 

broadcast setting, without placing much stronger trust 

assumptions on the network nodes. If one sender wants to 

send authentic data to mutually untrusted receivers, using a 

symmetric MAC is insecure: any one of the receivers knows 

the MAC key, and hence, could impersonate the sender and 

forge messages to other receivers. Hence, we need an 

asymmetric mechanism to achieve authenticated broadcast. 

One of our contributions is to construct authenticated 

broadcast from symmetric primitives only, and introduce 

asymmetry with delayed key disclosure and one way function 

key chains. 

3.3. Data integrity 

In communication, data integrity ensures the receiver that the 

received data is not altered in transit by an adversary. In 

SPINS, we achieve data integrity through data authentication, 

which is a stronger property. 

 

3.4. Data freshness 

Sensor networks send measurements over time, so it is not 

enough to guarantee con denasality and authentication.  we  

also must ensure each message is fresh. Informally, data 

freshness implies that the data is recent, and it ensures that no 

adversary replayed old messages. We identify two types of 

freshness: weak freshness, which provides partial message 

ordering, but carries no delay information, and strong 

freshness, which provides a total order on a request–response 

pair, and allows for delay estimation. Weak freshness is useful 

for sensor measurements, while strong freshness is useful for 

time synchronization within the network. 

 

IV. RELATED WORK 

consider key distribution for resource starved devices in a 

mobile environment [12]. Park et al. [13] point out 

weaknesses and improvements. Beller and Yacobi further 

develop key agreement and authentication protocols [4]. 

Boyd and Mathuria survey the previous work on key 

distribution and authentication for resources starved devices 

in mobile environments [8]. The majority of these approaches 

rely on asymmetric cryptography. Bergstrom et al. consider 

the problem of secure remote control of resource starved 

devices in a home [6]. 

Fox and Gribble present a security protocol providing 

secure access to application level proxy services [11]. Their 

protocol is designed to interact with a proxy to Kerberos and 

to facilitate porting services relying on Kerberos to wireless 

devices. 

The work of Patel and Crow croft focuses on security 

solutions for mobile user devices [9]. Unfortunately, their 

work uses asymmetric cryptography and is, hence, too 

expensive for the environments we envision. 

The work of Czerwinski et al. also relies on asymmetric 

cryptography for authentication [10]. 

Stajano and Anderson discuss the issues of bootstrapping 

security devices [51]. Their solution requires physical contact 

of the new device with a master device to imprint the trusted 

and secret information. 

Zhou and Haas propose to secure ad hoc networks using 

asymmetric cryptography [57]. Recently, Basagni et al. 

proposed to use a network wide symmetric key to secure an 

ad hoc routing protocol [2]. While this approach is efficient, it 

does not resist compromise of a single node. 

Carman et al. analyze a wide variety of approaches for key 

agreement and key distribution in sensor networks [9]. They 

analyze the overhead of these protocols on a variety of 

hardware platforms. 

Marti et al. discuss a mechanism to protect an ad hoc 

network against misbehaving nodes that fail to forward 

packets correctly [2]. They propose that each node runs a 

watchdog (to detect misbehaving neighbouring nodes) and a 

pathrater (to keep state about the goodness of other nodes); 

their solution, however, is better suited for traditional 

networks, with emphasis on reliable point to point 
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communication, than to sensor networks. 

Hubaux et al. present a system for ad hoc peer to peer 

authentication based on public key certificates [12]. They 

consider an ad hoc network with nodes powerful enough for 

performing asymmetric cryptographic operations. 

A number of researchers investigate the problem to 

provide cryptographic services in low end devices. We 

discuss the hardware efforts, followed by the algorithmic 

work on cryptography. Several systems integrate 

cryptographic primitives with low cost microcontrollers. 

Examples of such systems are secure AVR controllers [1], the 

Fortezza government standard [15], the Dallas I Button [13], 

and the Dyad system [15]. These systems support primitives 

for cryptography, and attempt to zeroes their memory if 

tampering is devices.  

Symmetric encryption algorithms seem to be inherently 

well suited to low end devices, because they have relatively 

low overhead. In practice, however, many low end 

microprocessors are only 4bit or 8bit, and do not provide 

(efficient) multiplication or variable rotate/shift instructions. 

Hence many symmetric ciphers are too expensive to 

implement on our target platform. The Advanced Encryption 

Standard (AES) [3] Rijndael block cipher [12] is too 

expensive for our platform. Depending on the 

implementation, AES was either too big or too slow for our 

application. Due to our severe limitation on our maximum 

code size, we chose to use RC5 by Ron Rivest [7]. Algorithms 

such as TEA by Wheeler and Needham [4] or TREYFER by 

Yuval [5] would be smaller alternatives, but those other 

ciphers have not yet been thoroughly analyzed. 

V. CONCLUSION 

We designed and built a security subsystem for an extremely 

limited sensor network platform .We have identified  and 

implemented useful security protocols for sensor networks: 

authenticated and con denial communication, and 

authenticated broadcast. We have implemented applications 

including an authenticated routing scheme and a secure node 

to node key agreement protocol. 

Most of our design is universal and applicable to other 

networks of low end devices. Our primitives only depend on 

fast symmetric cryptography, and apply to a wide variety of 

device configurations. On our limited platform energy spent 

for security is negligible compared with to energy spent on 

sending or receiving messages. It is possible to encrypt and 

authenticate all sensor readings. 

The communication costs are also small. Data 

authentication, freshness, and confi dentiality properties use 

up a net 6 bytes out of 30 byte packets. So, it is feasible to 

guarantee these properties on a per packet basis. It is dif cult 

to improve on this scheme, as transmitting a MAC is 

fundamental to guaranteeing data authentication. 

Certain elements of the design were in fluenced by the 

available experimental platform. If we had a more powerful 

platform, we could have used block ciphers other than RC5. 

The emphasis on code reuse is another property forced by our 

platform. A more powerful device would allow more modes 

of authentication. In particular, memory restrictions on 

buffering limit the effective bandwidth of authenticated 

broadcast. 

Despite the shortcomings of our target platform, we built a 

system that is secure and works. With our techniques, we 

believe security systems can become an integral part of 

practical sensor networks. 
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