

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-3, Issue-2, February 2016

 62 www.ijeas.org

Abstract— Wireless sensor networks will be widely deployed

in the near future. While much research has focused on making

these networks feasible and useful, security has received little

attention. We present a suite of security protocols optimized for

sensor networks: SPINS. SPINS has two secure building blocks:

SNEP and TESLA. SNEP includes: data con dentiality, two

party data authentication, and evidence of data freshness.. We

implemented the above protocols, and show that they are

practical even on minimal hardware .the performance of the

protocol suite easily matches the data rate of our network.

Additionally, we demonstrate that the suite can be used for

building higher level protocols.

Index Terms— secure communication protocols, sensor

networks, mobile ad hoc networks, MANET, authentication of

wireless communication, secrecy and con dentiality,

cryptography

I. INTRODUCTION

 We envision a future where thousands to millions of small

sensors form self organizing wireless networks. How can we

provide security for these sensor networks? Security is not

easy; compared with conventional desktop computers, severe

challenges exist – these sensors will have limited processing

power, storage, bandwidth, and energy.

We need to surmount these challenges, because security is so

important. Sensor networks will expand to all aspects of our

lives. Here are some typical applications:

Emergency response information: sensor networks will

collect information about the status of buildings, people, and

transportation pathways. Sensor information must be

collected and passed on in meaningful, secure ways to

emergency response personnel.

Energy management: in 2001 power blackouts plagued

California. Energy distribution will be better managed when

we begin to use remote sensors. For example, the power load

that can be carried on an electrical line depends on ambient

temperature and the immediate temperature on the wire. If

these were monitored by remote sensors and the remote

sensors received information about desired load and current

load, it would be possible to distribute load better. This would

avoid circumstances where Californians cannot receive

electricity while surplus electricity exists in other parts of the

country.

Medical monitoring: we envision a future where individuals

with some types of medical conditions receive constant

monitoring through sensors that monitor health conditions.

For some types of medical conditions, remote sensors may

apply remedies (such as instant release of emergency

medication to the bloodstream). Logistics and inventory

management: commerce in America is based on moving

 Surender Kumar, Guru Jambheswer University Hisar

goods, including commodities from locations where surpluses

exist to locations where

needs exist. Using remote sensors can substantially improve

these mechanisms. These mechanisms will vary in scale –

ranging from worldwide distribution of goods through

transportation and pipeline networks to inventory

management within a single retail store.

Battlefield management: remote sensors can help eliminate

some of the confusion associated with combat. They can

allow accurate collection of information about current battle

eld conditions as well as giving appropriate information to

soldiers, weapons, and vehicles in the battled.

This article presents a set of Security Protocols for Sensor

Networks, SPINS. The chief contributions of this article are:

Exploring the challenges for security in sensor networks.

Designing and developing TESLA (the “micro” version of

TESLA), providing authenticated streaming broadcast.

Designing and developing SNEP (Secure Network

Encryption Protocol) providing data con dentiality, two party

data authentication, and data freshness, with low overhead.

Designing and developing an authenticated routing protocol

using our building blocks.

1.1. Sensor hardware

At UC Berkeley, we are building prototype networks of small

sensor devices under the Smart Dust program [45], one of the

components of CITRIS. We have deployed these in one of

522

Table 1 Characteristics of prototype SmartDust nodes.

CPU 8bit, 4 MHz

Storage 8 Kbytes instruction ash

512 bytes RAM

512 bytes EEPROM

Communication 916 MHz radio

Bandwidth 10 Kbps

Operating system Tiny OS

OS code space 3500 bytes

Available code space 4500 bytes

our EECS buildings, Cory Hall. We are currently using these

for a very simple application – heating and air conditioning

control in the building. However, the same mechanisms that

we describe in this paper can be modified to support sensor

that handle emergency system such as re, earthquake, and

hazardous material response.

By design, these sensors are inexpensive, low power

devices. As a result, they have limited computational and

communication resources. The sensors form a self organizing

wireless network and form a multi hop routing topology.

Typical applications may periodically transmit sensor

readings for processing.

Our current prototype consists of nodes, small battery

powered devices, that communicate with a more powerful

base station, which in turn is connected to an outside network.

Table 1 summarizes the performance characteristics of these

Introduction to Security Protocols for Sensor

Network
Surender Kumar

Introduction to Security Protocols for Sensor Network

 63 www.ijeas.org

devices. At 4 MHz, they are slow and underpowered (the CPU

has good support for bit and byte level I/O operations, but

lacks support for many arithmetic and some logic operations).

They are only 8bit processors (note that according to [53],

80% of all microprocessors shipped in 2000 were 4 bit or 8 bit

devices). Communication is slow at 10 Kbps.

The operating system is particularly interesting for these

devices. We use TinyOS [23]. This small, event driven

operating system consumes almost half of 8 Kbytes of

instruction ash memory, leaving just 4500 bytes for security

and the application.

It is hard to imagine how significantly more powerful

devices could be used without consuming large amounts of

power. The energy source on our devices is a small battery, so

we are stuck with relatively limited computational devices.

Wireless communication is the most energy consuming

function performed by these devices, so we need to minimize

communications overhead. The limited energy supplies create

tensions for security: on the one hand, security needs to limit

its consumption of processor power; on the other hand,

limited power supply limits the lifetime of keys (battery

replacement is designed to reinitialize devices and zero out

keys).
1

1.2. Is security on sensors possible?

These constraints make it impractical to use most current

secure algorithms, since they were designed for powerful

processors. For example, the working memory of a sensor

Base stations differ from nodes in having longer lived energy

supplies and additional communications connections to

outside networks. PERRIG ET AL.

node is not sufficient to even hold the variables for

asymmetric cryptographic algorithms (e.g., RSA [14] with

1024 bits), let alone perform operations with them.

A particular challenge is broadcasting authenticated data to

the entire sensor network. Current proposals for authenticated

broadcast are impractical for sensor networks. Most proposals

rely on asymmetric digital signatures for the authentication,

which are impractical for multiple reasons (e.g., long

signatures with high communication overhead of 50–1000

bytes per packet, very high overhead to create and verify the

signature). Furthermore, previously proposed purely

symmetric solutions for broadcast authentication are

impractical: Gennaro and Rohatgi’s initial work required over

1 Kbyte of authentication information per packet [15], and

Rohatgi’s improved time signature scheme requires over 300

bytes per packet [14]. Some of the authors of this article have

also proposed the authenticated streaming broadcast TESLA

protocol [13]. TESLA works well on regular desktop

workstations, but uses too much communication and memory

on our resource starved sensor nodes. This article extends and

adapts TESLA to make it practical for broadcast

authentication for sensor networks. We call our new protocol

TESLA.

We have implemented all of these primitives. Our

measurements show that adding security to a highly resource

constrained sensor network is feasible.

Given the severe hardware and energy constraints, we must

be careful in the choice of cryptographic primitives and the

security protocols in the sensor networks.

II. SYSTEM ASSUMPTIONS

Before we outline the security requirements and present our

security infrastructure, we need to de ne the system

architecture and the trust requirements. The goal of this work

is to propose a general security infrastructure that is

applicable to a variety of sensor networks.

2.1. Communication architecture

Generally, the sensor nodes communicate over a wireless

network, so broadcast is the fundamental communication

primitive. The baseline protocols account for this property: on

one hand they affect the trust assumptions, and on the other

they minimize energy usage.

A typical Smart Dust sensor network forms around one or

more base stations, which interface the sensor network to the

outside network. The sensor nodes establish a routing forest,

with a base station at the root of every tree. Periodic

transmission of beacons allows nodes to create a routing

topology. Each node can forward a message towards a base

station, recognize packets addressed to it, and handle message

broadcasts. The base station accesses individual nodes using

source routing. We assume that the base station has

capabilities similar to the network nodes, except that it has

sufficient battery power to surpass the lifetime of all sensor

nodes, sufficient memory to store cryptographic keys, and

means for communicating with outside networks

We do have an advantage with sensor networks, because

most communication involves the base station and is not

between two local nodes. The communication patterns within

our network fall into three categories:

Node to base station communication, e.g., sensor readings.

Base station to node communication, e.g., speci c requests.

Base station to all nodes, e.g., routing beacons, queries or

reprogramming of the entire network.

Our security goal is to address these communication

patterns, though we also show how to adapt our baseline

protocols to other communication patterns, i.e. node to node

or node broadcast.

2.2. Trust requirements

Generally, the sensor networks may be deployed in untrusted

locations. While it may be possible to guarantee the integrity

of the each node through dedicated secure microcontrollers

(e.g., [1] or [13]), we feel that such an architecture is too

restrictive and does not generalize to the majority of sensor

networks. Instead, we assume that individual sensors are

untrusted. Our goal is to design the SPINS key setup so a

compromise of a node does not spread to other nodes.

Basic wireless communication is not secure. Because it is

broadcast, any adversary can eavesdrop on traffic, inject new

messages, and replay old messages. Hence, our protocols do

not place any trust assumptions on the communication

infrastructure, except that messages are delivered to the

destination with nonzero probability.

Since the base station is the gateway for the nodes to

communicate with the outside world, compromising the base

station can render the entire sensor network useless. Thus the

base stations are a necessary part of our trusted computing

base. Our trust setup reacts this and so all sensor nodes

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-3, Issue-2, February 2016

 64 www.ijeas.org

intimately trust the base station: at creation time, each node

gets a master secret key which it shares with the base station. .

Finally, each node trusts itself. This assumption seems

necessary to make any forward progress. In particular, we

trust the local clock to be accurate, i.e. to have small drift.

2.3. Design guidelines

With the limited computation resources available on our

platform, we cannot afford to use asymmetric cryptography

and so we use symmetric cryptographic primitives to

construct the SPINS protocols. Due to the limited program

store, we construct all cryptographic primitives (i.e.

encryption, message authentication code (MAC), hash,

random number generator) out of a single block cipher for

code reuse. To reduce communication overhead we exploit

common state between the communicating parties

III. REQUIREMENTS FOR SENSOR NETWORK SECURITY

This section formalizes the security properties required by

sensor networks, and shows how they are directly applicable

in a typical sensor network.

3.1. Data confidentiality

A sensor network should not leak sensor readings to

neighbouring networks. In many applications (e.g., key

distribution) nodes communicate highly sensitive data. The

standard approach for keeping sensitive data secret is to

encrypt the data with a secret key that only intended receivers

possess, hence achieving con denasality. Given the observed

communication patterns, we set up secure channels between

nodes and base stations and later bootstrap other secure

channels as necessary.

3.2. Data authentication

Message authentication is important for many applications in

sensor networks (including administrative tasks such as

network reprogramming or controlling sensor node duty

cycle). Since an adversary can easily inject messages, the

receiver needs to ensure that data used in any decision making

process originates from a trusted source. Informally, data

authentication allows a receiver to verify that the data really

was sent by the claimed sender. Informally, data

authentication allows a receiver to verify that the data really

was sent by the claimed sender.

In the two party communication case, data authentication

can be achieved through a purely symmetric mechanism: The

sender and the receiver share a secret key to compute a

message authentication code (MAC) of all communicated

data. When a message with a correct MAC arrives, the

receiver knows that it must have been sent by the sender.

This style of authentication cannot be applied to a

broadcast setting, without placing much stronger trust

assumptions on the network nodes. If one sender wants to

send authentic data to mutually untrusted receivers, using a

symmetric MAC is insecure: any one of the receivers knows

the MAC key, and hence, could impersonate the sender and

forge messages to other receivers. Hence, we need an

asymmetric mechanism to achieve authenticated broadcast.

One of our contributions is to construct authenticated

broadcast from symmetric primitives only, and introduce

asymmetry with delayed key disclosure and one way function

key chains.

3.3. Data integrity

In communication, data integrity ensures the receiver that the

received data is not altered in transit by an adversary. In

SPINS, we achieve data integrity through data authentication,

which is a stronger property.

3.4. Data freshness

Sensor networks send measurements over time, so it is not

enough to guarantee con denasality and authentication. we

also must ensure each message is fresh. Informally, data

freshness implies that the data is recent, and it ensures that no

adversary replayed old messages. We identify two types of

freshness: weak freshness, which provides partial message

ordering, but carries no delay information, and strong

freshness, which provides a total order on a request–response

pair, and allows for delay estimation. Weak freshness is useful

for sensor measurements, while strong freshness is useful for

time synchronization within the network.

IV. RELATED WORK

consider key distribution for resource starved devices in a

mobile environment [12]. Park et al. [13] point out

weaknesses and improvements. Beller and Yacobi further

develop key agreement and authentication protocols [4].

Boyd and Mathuria survey the previous work on key

distribution and authentication for resources starved devices

in mobile environments [8]. The majority of these approaches

rely on asymmetric cryptography. Bergstrom et al. consider

the problem of secure remote control of resource starved

devices in a home [6].

Fox and Gribble present a security protocol providing

secure access to application level proxy services [11]. Their

protocol is designed to interact with a proxy to Kerberos and

to facilitate porting services relying on Kerberos to wireless

devices.

The work of Patel and Crow croft focuses on security

solutions for mobile user devices [9]. Unfortunately, their

work uses asymmetric cryptography and is, hence, too

expensive for the environments we envision.

The work of Czerwinski et al. also relies on asymmetric

cryptography for authentication [10].

Stajano and Anderson discuss the issues of bootstrapping

security devices [51]. Their solution requires physical contact

of the new device with a master device to imprint the trusted

and secret information.

Zhou and Haas propose to secure ad hoc networks using

asymmetric cryptography [57]. Recently, Basagni et al.

proposed to use a network wide symmetric key to secure an

ad hoc routing protocol [2]. While this approach is efficient, it

does not resist compromise of a single node.

Carman et al. analyze a wide variety of approaches for key

agreement and key distribution in sensor networks [9]. They

analyze the overhead of these protocols on a variety of

hardware platforms.

Marti et al. discuss a mechanism to protect an ad hoc

network against misbehaving nodes that fail to forward

packets correctly [2]. They propose that each node runs a

watchdog (to detect misbehaving neighbouring nodes) and a

pathrater (to keep state about the goodness of other nodes);

their solution, however, is better suited for traditional

networks, with emphasis on reliable point to point

Introduction to Security Protocols for Sensor Network

 65 www.ijeas.org

communication, than to sensor networks.

Hubaux et al. present a system for ad hoc peer to peer

authentication based on public key certificates [12]. They

consider an ad hoc network with nodes powerful enough for

performing asymmetric cryptographic operations.

A number of researchers investigate the problem to

provide cryptographic services in low end devices. We

discuss the hardware efforts, followed by the algorithmic

work on cryptography. Several systems integrate

cryptographic primitives with low cost microcontrollers.

Examples of such systems are secure AVR controllers [1], the

Fortezza government standard [15], the Dallas I Button [13],

and the Dyad system [15]. These systems support primitives

for cryptography, and attempt to zeroes their memory if

tampering is devices.

Symmetric encryption algorithms seem to be inherently

well suited to low end devices, because they have relatively

low overhead. In practice, however, many low end

microprocessors are only 4bit or 8bit, and do not provide

(efficient) multiplication or variable rotate/shift instructions.

Hence many symmetric ciphers are too expensive to

implement on our target platform. The Advanced Encryption

Standard (AES) [3] Rijndael block cipher [12] is too

expensive for our platform. Depending on the

implementation, AES was either too big or too slow for our

application. Due to our severe limitation on our maximum

code size, we chose to use RC5 by Ron Rivest [7]. Algorithms

such as TEA by Wheeler and Needham [4] or TREYFER by

Yuval [5] would be smaller alternatives, but those other

ciphers have not yet been thoroughly analyzed.

V. CONCLUSION

We designed and built a security subsystem for an extremely

limited sensor network platform .We have identified and

implemented useful security protocols for sensor networks:

authenticated and con denial communication, and

authenticated broadcast. We have implemented applications

including an authenticated routing scheme and a secure node

to node key agreement protocol.

Most of our design is universal and applicable to other

networks of low end devices. Our primitives only depend on

fast symmetric cryptography, and apply to a wide variety of

device configurations. On our limited platform energy spent

for security is negligible compared with to energy spent on

sending or receiving messages. It is possible to encrypt and

authenticate all sensor readings.

The communication costs are also small. Data

authentication, freshness, and confi dentiality properties use

up a net 6 bytes out of 30 byte packets. So, it is feasible to

guarantee these properties on a per packet basis. It is dif cult

to improve on this scheme, as transmitting a MAC is

fundamental to guaranteeing data authentication.

Certain elements of the design were in fluenced by the

available experimental platform. If we had a more powerful

platform, we could have used block ciphers other than RC5.

The emphasis on code reuse is another property forced by our

platform. A more powerful device would allow more modes

of authentication. In particular, memory restrictions on

buffering limit the effective bandwidth of authenticated

broadcast.

Despite the shortcomings of our target platform, we built a

system that is secure and works. With our techniques, we

believe security systems can become an integral part of

practical sensor networks.

VI. ACKNOWLEDGEMENTS

We gratefully acknowledge funding support for this research.

This research was sponsored in part by the United States

Postal Service (contract USPS 10259201Z0236), by the

United States Defense Advanced Research Projects Agency

(contracts DABT6398C0038, “Ninja”, N660019928913,

“Endeavour”, and F3361501C1895, “NEST”), by the United

States National Science Foundation (grants FD9979852 and

RI EIA9802069) and from gifts and grants from the

California MICRO program, Intel Corporation, IBM, Sun

Microsystems, and Philips Electronics. DARPA Contract

N660019928913 is under the supervision of the Space and

Naval Warfare Systems Center, San Diego. This paper

represents the opinions of the authors and do not necessarily

represent the opinions or policies, either expressed or

implied, of the United States government, of DARPA, NSF,

USPS, or any other of its agencies, or any of the other funding

sponsors.

We thank Jean Pierre Hubaux, Dawn Song and David

Wagner for helpful discussions and comments. An earlier

version of this work appeared as [44].

REFERENCES

[1] Atmel, Secure Microcontrollers for SmartCards, http://www.

atmel.com/atmel/acrobat/1065s.pdf

[2] S. Basagni, K. Herrin, E. Rosti and D. Bruschi, Secure Pebblenets, in:

ACM International Symposium on Mobile Ad Hoc Networking and

Computing (MobiHoc 2001) (2001) pp. 156–163.

[3] M. Bellare, A. Desai, E. Jokipii and P. Rogaway, A concrete security

treatment of symmetric encryption: Analysis of the DES modes of

operation, in: Symposium on Foundations of Computer Science

(FOCS) (1997).

[4] M. Beller and Y. Yacobi, Fully edged twoway public key authenti

cation and key agreement for lowcost terminals, Electronics Letters

29(11) (1993) 999–1001.

[5] S. Bellovin and M. Merrit, Augmented encrypted key exchange: a

passwordbased protocol secure against dictionary attacks and

password le compromise, in: ACM Conference on Computer and

Communications Security CCS1 (1993) pp. 244–250.

[6] P. Bergstrom, K. Driscoll and J. Kimball, Making home automation

communications secure, IEEE Computer 34(10) (2001) 50–56.

[7] A. Biryukov and D. Wagner, Slide attacks, in: International Workshop

on Fast Software Encryption (1999).

[8] C. Boyd and A. Mathuria, Key establishment protocols for secure

mobile communications: A selective survey, in: Australasian

Conference on Information Security and Privacy (1998) pp. 344–355.

[9] D.W. Carman, P.S. Kruus and B.J. Matt, Constraints and approaches

for distributed sensor network security, NAI Labs Technical Report

No. 00010 (2002).

[10] S.E. Czerwinski, B.Y. Zhao, T.D. Hodes, A.D. Joseph and R.H. Katz,

An architecture for a secure service discovery service, in: ACM

International Conference on Mobile Computing and Networking

(MobiComÕ99) (1999) pp. 24–35.

[11] D. Johnson, D.A. Maltz and J. Broch, The dynamic source routing

protocol for mobile ad hoc networks, Internet draft, Mobile AdHoc

Network (MANET) Working Group, IETF (1999).

[12] J. Daemen and V. Rijmen, AES proposal: Rijndael (1999).

[13] Dallas, iButton: A Javapowered cryptographic iButton, http://

www.ibutton.com/ibuttons/java.html

[14] W. Dif e and M.E. Hellman, Privacy and authentication: An

introduction to cryptography, Proceedings of the IEEE 67(3) (1979)

397–427.

[15] Fortezza, Fortezza: Application implementers guide (1995).

